利用原子单电子晶体管成像亚摩尔势

近日,以色列魏茨曼科学研究所Ilani, Shahal团队实现了利用原子单电子晶体管成像亚摩尔势。这一研究成果发表在2026年2月4日出版的《自然》杂志上。
固体中电子的特性源于其所处的周期性势场环境。莫尔晶格的出现彻底改变了学界在纳米尺度上调控这类势场的能力,并催生了众多突破性发现。然而,对这些静电势场进行直接成像仍面临挑战。
研究组介绍原子单电子晶体管(SET)——一种以范德华材料中单个原子缺陷作为超高灵敏度、高分辨率势场传感器的扫描探针新技术。该探针基于量子扭转显微镜(QTM)平台构建,利用QTM在范德华异质结间形成纯净、可扫描二维界面的能力。借助原子SET,研究组首次实现了对经典莫尔界面(石墨烯与六方氮化硼对齐体系)中静电势的直接成像。测量结果显示:该电势呈现出近似C6对称性,对载流子浓度依赖性极弱,且在无载流子条件下仍具有约60毫伏的显著幅值。
理论分析表明,这种对称性源于多种对称性相互竞争下的精密物理机制协同作用。实测幅值大幅超越理论预测,暗示当前理论认知可能存在不足。凭借1纳米空间分辨率及可探测数百万分之一电子电荷电势的灵敏度,原子SET能够实现对电荷序与热力学性质的超高灵敏成像,为研究包括对称性破缺相、量子晶体、涡旋电荷及分数化准粒子等广泛量子现象提供了全新手段。
附:英文原文
Title: Imaging the sub-moiré potential using an atomic single electron transistor
Author: Klein, Dahlia R., Zondiner, Uri, Keren, Amit, Birkbeck, John, Inbar, Alon, Xiao, Jiewen, Zamir, Yuval, Sidorova, Mariia, Al Ezzi, Mohammed M., Peng, Liangtao, Watanabe, Kenji, Taniguchi, Takashi, Adam, Shaffique, Ilani, Shahal
Issue&Volume: 2026-02-04
Abstract: Electrons in solids owe their properties to the periodic potential landscapes they experience. The advent of moiré lattices has revolutionized our ability to engineer such landscapes on nanometre scales, leading to numerous ground-breaking discoveries. Despite this progress, direct imaging of these electrostatic potential landscapes remains elusive. Here we introduce the atomic single electron transistor (SET), a new scanning probe that uses a single atomic defect in a van der Waals material as an ultrasensitive, high-resolution potential sensor. Built on the quantum twisting microscope (QTM) platform1, this probe leverages the capability of the QTM to form a pristine, scannable two-dimensional interface between vdW heterostructures. Using the atomic SET, we present the first direct images of the electrostatic potential in a canonical moiré interface: graphene aligned to hexagonal boron nitride2,3,4,5,6,7,8,9,10. The measured potential exhibits an approximate C6 symmetry, minimal dependence on carrier density and a substantial amplitude of approximately 60mV, even in the absence of carriers. Theory indicates that this symmetry arises from a delicate interplay of physical mechanisms with competing symmetries. The measured amplitude significantly exceeds theoretical predictions, suggesting that current understanding may be incomplete. With 1nm spatial resolution and sensitivity to detect the potential of even a few millionths of an electron charge, the atomic SET enables ultrasensitive imaging of charge order and thermodynamic properties across a wide range of quantum phenomena, including symmetry-broken phases, quantum crystals, vortex charges and fractionalized quasiparticles.
DOI: 10.1038/s41586-025-10085-z
Source: https://www.nature.com/articles/s41586-025-10085-z


